

Mars Rover CDR

York Area Rocketry Team

Presentation Overview

- System Overview
 - Mission Summary
 - System Requirements
 - System Level Concept Trade
 - System Concept of Operations
 - Physical Layout
- Overview of Rocket
 - Major Components Identified
 - Rocket Weight
 - Motor Selection
 - Airframe Diameter
 - Fin Size
 - Number of Fins
 - Length of Rocket
 - CP and CG Identified

- Overview of Rocket (Cont.)
 - Rocket Materials
- Rocket Recovery System
 - Parachute Selection
 - Decent Rate
 - Type of Shock Cord
 - Linkages and Strengths
 - Attachment Points to Frame
 - Parachute of Selection
 - Parachute Protection
- Parachute Ejection
 - Altimeter/Motor Ejection
- Rocket Motor Selection
 - Primary Motor Selection

- Rocket Motor Selection (Cont.)
 - Primary Motor Thrust to Weight Ratio
 - Secondary Motor
 - Secondary Motor Thrust to Weight Ratio
 - Primary Motor Flight Simulation
 - Secondary Motor Flight Simulation
- Rover Design
 - Rover Design Overview, Rover Mechanics, Rover Materials, Rover Descent Control, Rover Mass
 - Rover Electronics, Rover Camera, Rover Image Transmission
 - Rover Image Transmission
 - Rover Power, Rover Power Distribution
 - Rover Markers
 - Rover Software Design, Software Flowchart, Rover Payload Integration⁴

- Rover Testing
 - Subsystem testing
 - Intergration Testing
 - Functional Testing
 - Rocket Testing
 - Parachute Deployment Testing
 - Payload Deployment Testing
 - Flight Testing
 - Flight Operations
 - Rocket Prep
 - Rover Prep
 - Rover Intergration into Rocket
 - Launch Pad Preparation
 - Rover aiming process

- Program Schedule
 - Gantt Chart
 - Component and Service Schedule
- Program Budget
 - Rover Component
 - Rocket Components
 - Services
 - Travel expenses
- Summary

Presentation Outline

Team Member Name	Section Presenting			
Adam Winchell	Intro & Rocket Design			
Zach Ruth	Rocket Design			
Sarah Staley	System Overview			
Ryan Shields	System Overview			
Gabe Berman	Schedule			
Jakub Becker	Rover Design			
Michael Geyer	Rover Design			
Tyler Sengia	Testing & Schedule			
Hayden Forbush	Budgeting			

Team Organization

Team Member Name & Grade	Team Member Role			
Adam Winchell – 12	Team Captain			
Zachary Ruth – 12	Team Co-Captain			
Tyler Sengia -12	Rover Software Developer			
Michael Geyer -12	Rover Hardware Developer			
Ryan Shields -12	System Developer			
Jakub Becker – 11	Rover Manufacturing			
Sarah Staley – 11	Electronics Bay Developer			
Gabriel Berman -11	Team Safety Officer			
Hayden Forbush -9	Financial Scheduler			

Acronyms

- PDR: Preliminary design review
- CDR: Critical design review
- CONOPS: Concept of operations
- CP: Center of pressure
- CG: Center of Gravity
- MDRA- Maryland-Delaware Rocketry Association
- TWR Thrust to Weight Ratio
- UTS Ultrasonic Sensor
- ICST Image Capture Storage and Transmission
- TANK Treaded Automated Navigational Kit

System Overview

Design a rocket and Mars rover to launch to at least 1000 feet and deploy the Mars rover. The Mars rover must be fully contained in the rocket before being deployed. Once deployed, the Mars rover must return to the ground safely. When it lands, the rover will take a picture with a camera. Up to four images will be taken, each image in the forward, left, right, and rear direction. Afterwards, the Mars rover shall release a bright colored marker that can be easily found. The marker must be placed at the point of landing. It cannot be tossed, shot, or projected beyond its landing location. Once released, the rover must then travel 10 feet and release a second marker. The rover then must turn or move 90 degrees in either direction and travel 10 feet. Travel must be completed within ten minutes. Time starts at the time of landing. Method of travel is up to the team.

- Rover must weigh less than 2 Kg completely within the rocket while working autonomously
- Rover recovery system must be secure and no pyrotechnics are allowed
- 4 pictures will be taken in color at 640x480 or higher
- At landing, the rover must release the recovery system
- Must travel 10 feet or 120 inches then drop a marker
- Travel a minimum of two feet in each segment
- The rover must be able to detect when it has flown and landed
- Travel must be completed within 10 minutes of landing

- Total installed impulse shall not exceed 2,560 Newton-seconds or a K motor
- All parts of the rocket must safely return under a recovery system
- The airframe, nose cone, fins, bulk plates, and centering rings cannot be made of any types of metal
- The rocket must reach at least 1000 feet
- Must use a commercial altimeter
- Average TWR must be greater than 5:1
- The rocket must use a motor retainer

System Concept of Operations Rover

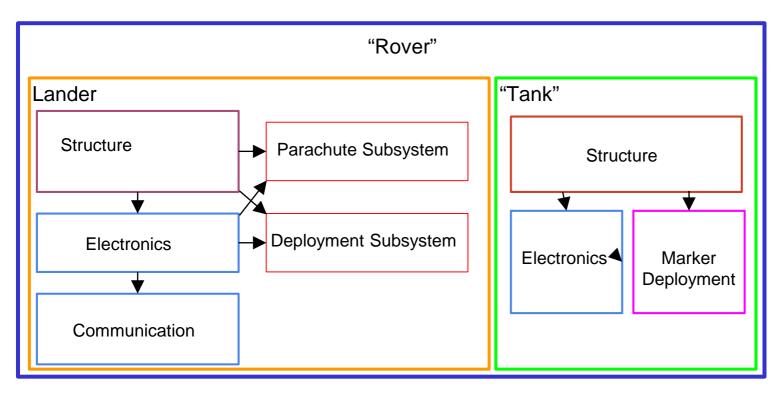
- Provide overview of operations of the system from launch to landing to rover operations.
 - Launch and descent operations
 - Rover Operations

Ultrasonic Sensor detects when to release parachute from lander

Lander makes contact, arms extend, and lander is righted if landed on side

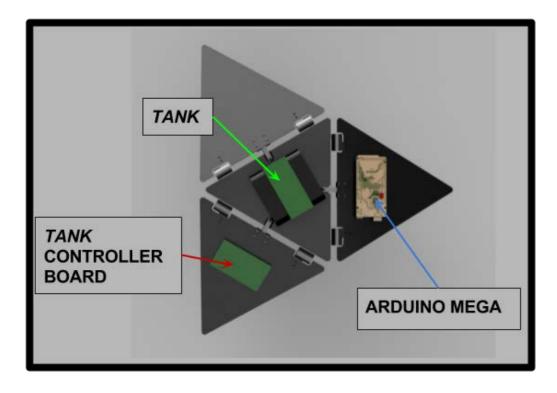
Cameras takes pictures and write them to SD cards

Tank protocol begins, and tank drives out of lander

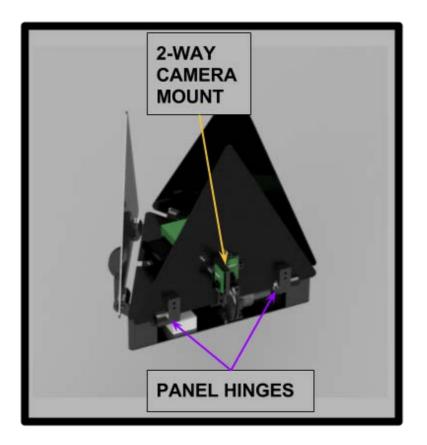

Pictures are relayed to ground station

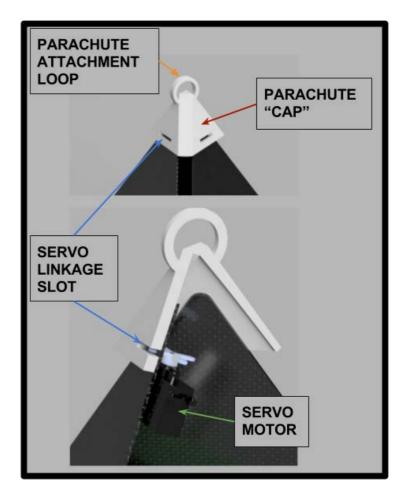
Tank stops at 10 ft, moves turret to release marker, turns and continues

- Post-launch recovery
- Simple flow diagrams and cartoons are a good way to present the CONOPS

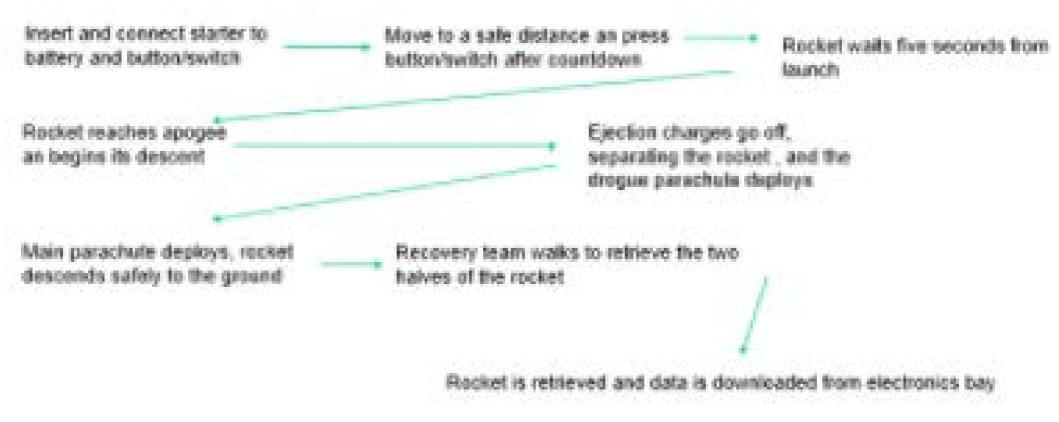


System Level Concept


Physical Layout



Physical Layout cont.



Physical Layout cont.

Overview of operations of the system from launch to landing to Payload operations.

- Safety officer and team adviser will go out to retrieve the rocket.
- They will use the tracking receivers in order to locate the rocket sections.
- The electronics will be disarmed using the "Remove Before Flight" keys, and the black powder charges will be checked by the team advisor for any possible dangers.
- The rocket will then be deemed safe to carry, and transport back to base of operations.

- Diagram of rocket showing major components
 - The rocket will be 141 inches long, and have a 12 inch diameter body tube.
 - The rover will be located in the front half of the body tube, along with the main parachute while the drogue chute will be in the back half of the body tube.
 - The E-Bay will be setting off an ejection charge. This charge will blow off the nosecone, causing it to pull the rover in the sabot out of the front boy tube.

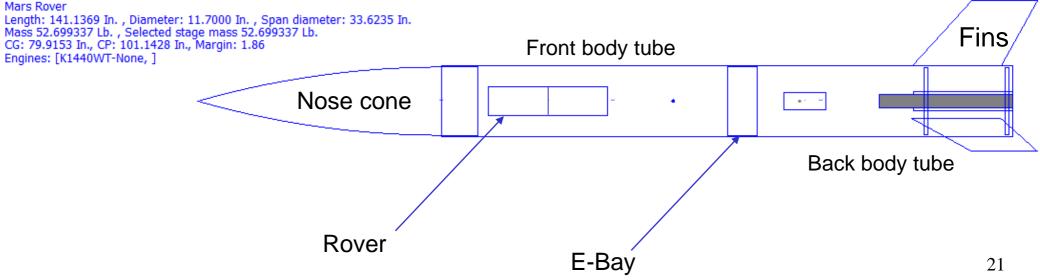
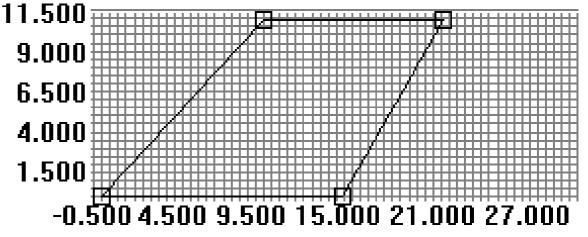


Diagram of rover

- H: 355mm W: 280mm L: 280mm
- Major Components
 - tank Free from lander, flying during maneuvers
 - tank Controller Housed in lander, controlled by Arduino
 - Arduino Housed in Lander, main interface for components
 - Ultrasonic Sensor Housed in cutout in bottom of lander, senses ground approaching to signal release of parachute
 - Camera Housed on top of lander
 - Base station Kept at launch site, used to recover pictures wirelessly

Rocket Design

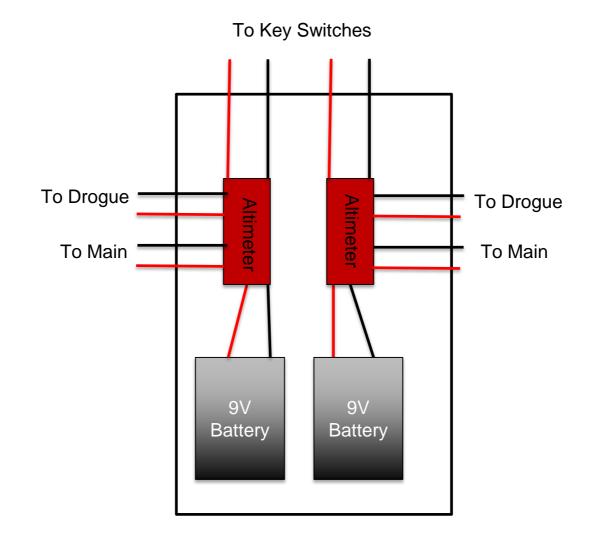

- The material used for the body tubes has been changed to phenolic tubing to decrease mass of the rocket and to obtain a TWR of at least 5:1
- Fin design has been changed to move Center of Pressure back, increasing stability and reducing the mass as well.
- The new motor selected is a Cesaroni K1440 White Thunder. This motor will get our redesigned rocket to the target altitude, and it meets the 5:1 TWR requirement

 Since the PDR, we opted to switch to a driving tank instead of our flying drone idea. We did this for competition legality and simplicity. We also modified the lander design to a model closer to the Spirit Mars lander. We chose this design because it accommodates our tank more closely.

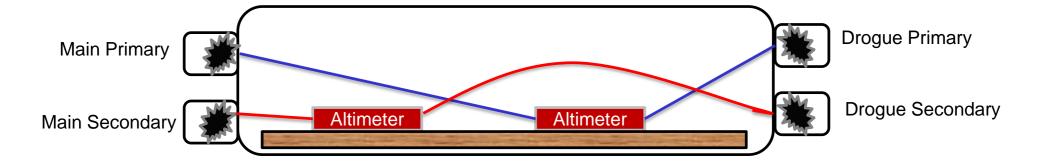
- Describe overall rocket design
 - Nose cone connected to front body tube, which is connected to the electronics bay, serving as a tube coupler between the front and back body tubes. Fins are attached to the back body tube, and the motor tube is inserted and mounted inside the back body tube
 - Total Weight 52.70 lbs. 1
 - Motor Cesaroni K1440
 - Diameter 12"
 - The rocket is built with a three-fin-design.
 - 141.13 inches (11 ft. 9 in.)

 CG is 79.94 inches from the front end and CP is 101.14 inches. This is 21.2 inches apart, and based on the diameter of the rocket, this gives a margin of 1.86.

- Airframe Material 1/8 inch Phenolic Tubing
- Fin Material 1/8 inch fiberglass fins
- Nosecone material Fiberglass
- Adhesives Used Rocket-Poxy, 5-Minute Epoxy, and JB Weld. They were all used for centering ring and fin attachment
- Rail Guides Unistrut Rail Buttons
- Active Motor Retention using Aeropack Motor Retainer


- Parachute selection- 10 ft Iris Ultra parachute from Fruity Chutes for main parachute, and 72 inch elliptical for drogue parachute
- Descent Rate Under main- 17.26 ft/s
- Descent Rate Under drogue- 26.16 ft/s
- . Harnesses
 - 7/16 inch tubular Kevlar, 25 feet long for front, and 25 feet for back half
 - Swivel to hold parachute using quick links. 880 lbs. max
 - Quick links attached to parachutes are attached to the swivel on the shock cord which are secured to U-Bolts on the rocket using quick links
 - Parachutes are protected by Nomex heat shields, and Nomex sleeves are put on the shock cord for protection

- Altimeter used will be a PerfectFlite Stratologger CF. Ejection charges will be at apogee and 600 feet above the ground. It will be Altimeter-Based Ejections (Primary and Secondary)
 - When loading, an 18 year old student holds electronics bay, while the NAR mentor loads and seals the black powder ejection wells.
 - To arm the recovery system, while on the pad, key switches are turned arming the altimeter. Key switches are removed and stored with the recovery team.
 - Key switches are turned arming the recovery system before the igniter is inserted to ensure safety in the case of an accidental launch.
- Through online calculation and experience, we will be using 9.6 g of 4F grain size black powder for the front and back half to obtain an ejection pressure of 14 psi. We will testing extensively in ground ejection tests in order to get an exact desired and safe number.

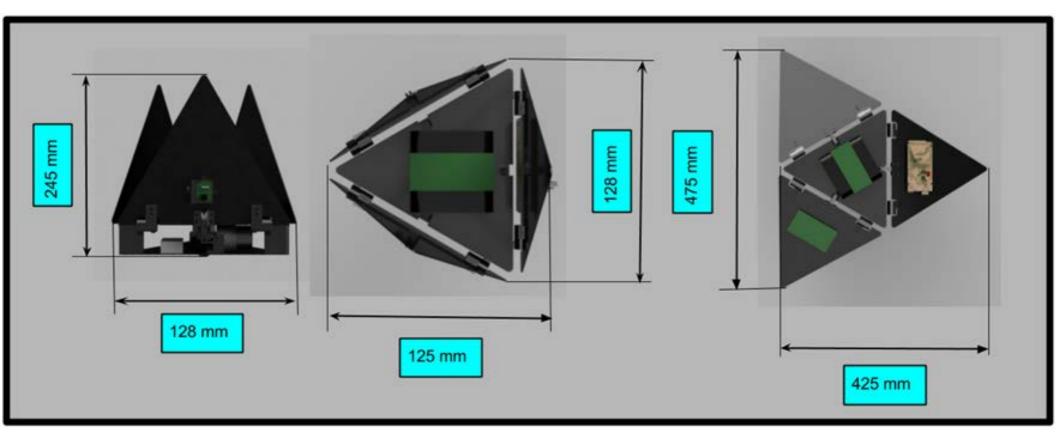


Wiring diagram of altimeter

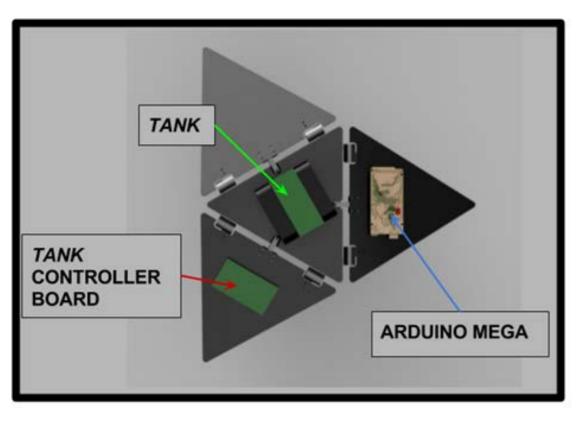
Wiring diagram of altimeter

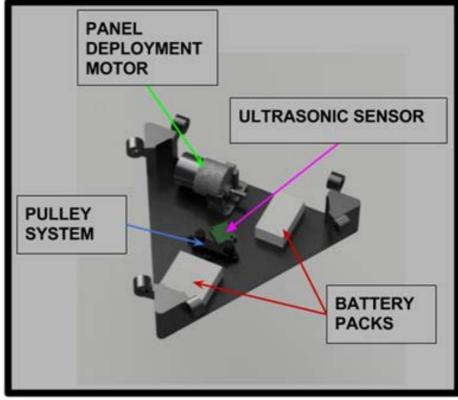
- Primary motor selection Aerotech K1440 (6.1 : 1 TWR)
- Secondary motor selection Ceseroni K2000 VMAX (8.5 : 1 TWR)
- RockSim 9 was used for all simulations

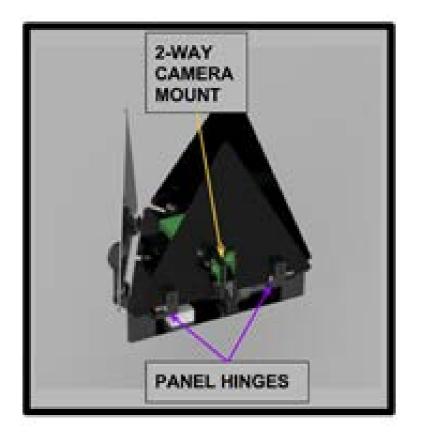
Engines loaded	Max. altitude Feet		Max. acceleration Feet/sec/sec	Time to apogee	Velocity at deploym Feet / Sec	Altitude at deploym Feet
[K1440WT-None]	1265.36	273.53	620.48	9.36	2.80	1265.36
[2330-K2000-VM-P-f	1209.94	278.69	620.26	9.02	0.17	1209.94

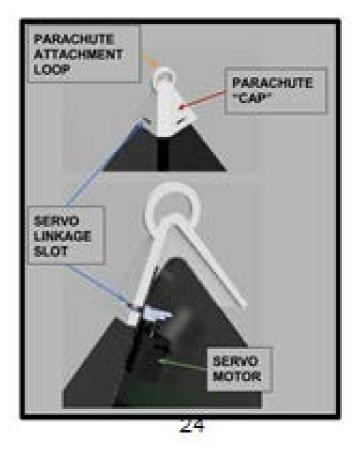

- . Show results of any test flights
 - There have been no test flights yet, as our January launch was canceled due to weather. We plan to have a launch on February 17 and 18 and one also in March if needed.

Rover Design

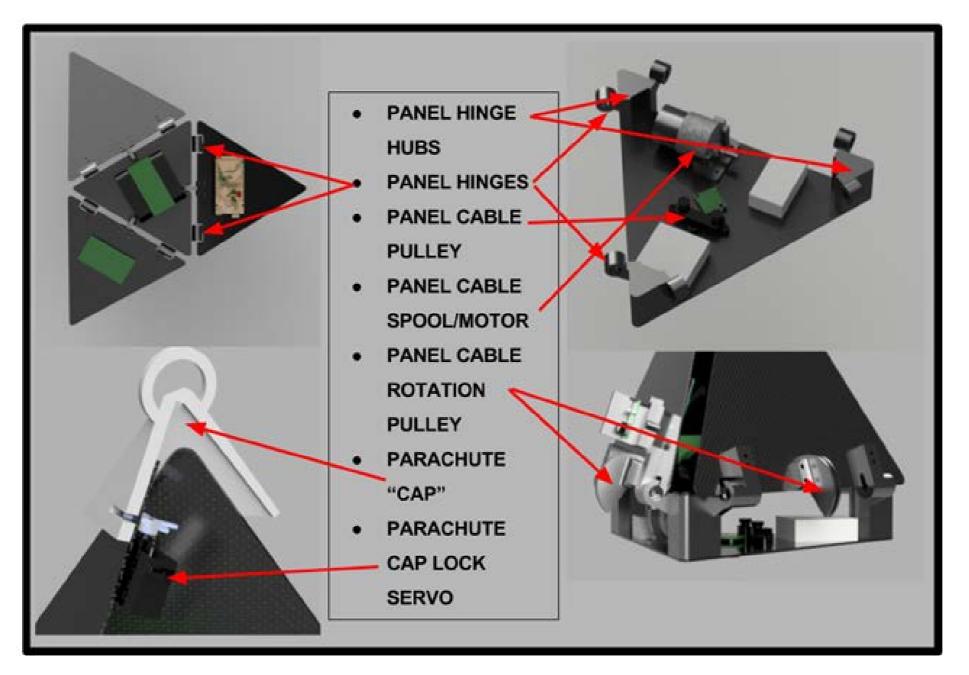



Rover Design Overview

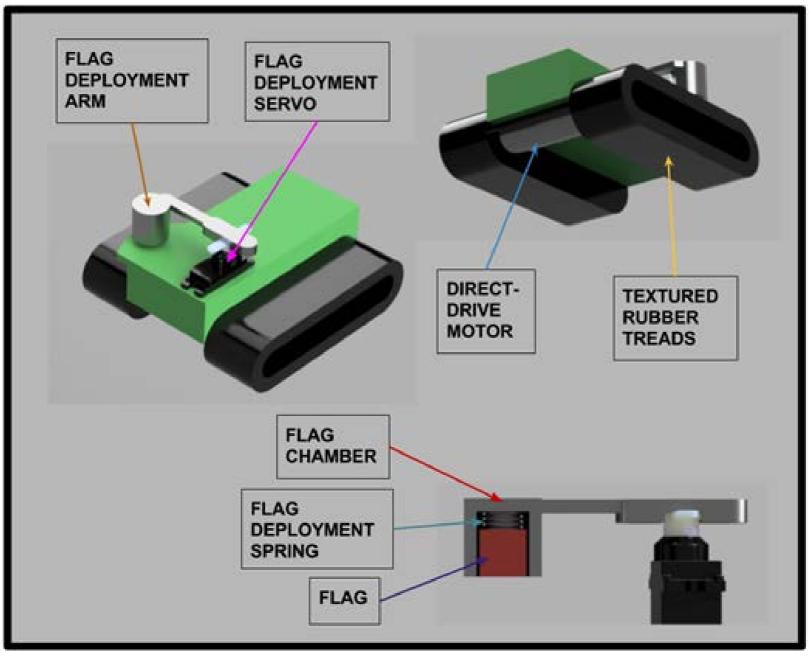

Rover Design Overview cont.



Rover Design Overview cont.



Mechanical Subsystem

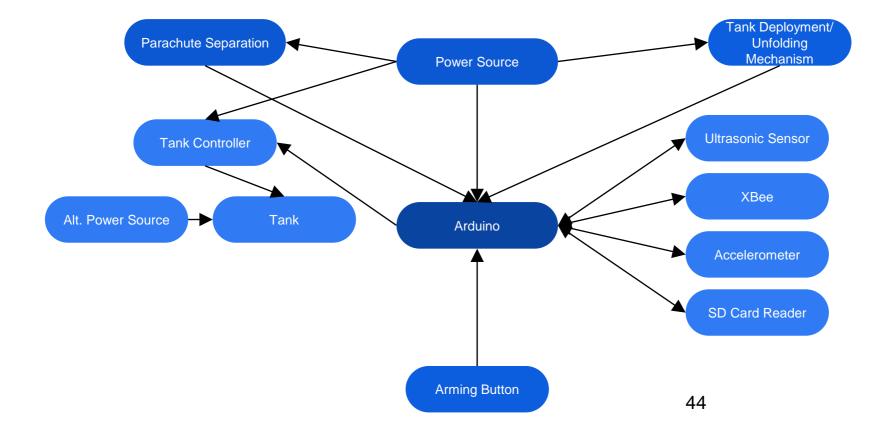


Mechanical Layout

Mechanical Layout

- Descent Control Methods:
 - 50 inch Parachute
 Parachute detached at 10 feet from ground
 Parachute descent rate: 4.9 m/s (16.0 ft/s)
 - Inflatable Drag structure/airbag Descent rate: 10.2 m/s (33.5 ft/s)
- The parachute was chosen as our descent method for the following:
 - Simplicity
 - Proven results
 - Low descent rate
 - Cost effectiveness

Rover Mass Budget


Rover Mass Budget			
Component	Mass (g)	total mass (g)	Uncertainty
Panels (x5)	30.9	154.5	10
Motor	138.5	138.5	0.1
3D printed components	500	500	50
Electronics	290	290	20
Power Systems	105	105	10
ΤΑΝΚ	158	158	20
TOTALS:		1346	110.1

Rover Electronics

Block Diagram

Rover Electronics

- Electronic block diagram
 - ATMEGA2560 (Arduino), Micro-SD Breakout Board+
 - 256 kB RAM (Arduino)
 - MMA8541 (Accelerometer), PTC06 (Camera), MB1040 (Ultrasonic Sensor)

Sensors Selected For:

- Ease of Use
- Plentiful Documentation
- Accuracy

Processor and Memory

•Arduino Mega

- -ATmega2560, 256 kB flash, 8 kB SRAM, 4 kB EEPROM
- -Operating Voltage: 5V, Input Voltage: 9V
- -Processor Speed: 16 MHz
- -54 digital IO pins, 16 analog input pins

•Identify sensors to be used to determine state of rover

-Ultrasonic Sensor (MB1040)

Range: 15-640cm

Working Voltage and Amperage: 5V, 2.0mA

-Accelerometer (MMA8541)

Resolution: 14 bit

Working Voltage and Amperage: 1.95V-3.6V, 6µA-165µA

8 pins to Arduino

Rover Camera

Miniature TTL Serial JPEG Camera with NTSC Video

Selected for ease of use (output in JPEG format) and plentiful examples and documentation

https://www.adafruit.com/product/1386

37

- Concept currently in use: 4 Cameras mounted in each direction on Lander. Selected for simplicity.
- Alternate concept: 1 Camera mounted on motor, rotates and takes picture in each direction

- XBee XB24-Z7WIT-004 "ZigBee" for Lander and Ground Station
 - https://www.adafruit.com/product/968
 - 2mW output
 - Mesh network topology
 - 400ft (120m) range
 - Range Tested
 - Works on line of sight, short range
 - Will need more powerful model

Image Transmission Trade (cont.)

- 2.4GHz XBee XBP24-AWI-001 "ZigBee" for Lander and Ground Station
 - https://www.sparkfun.com/products/8742
 - 60mW output
 - Mesh network topology
 - 1 mile (1500m) range
 - Has the higher transmission output needed
 - This is the Transmission/Radio model selected for the project

Rover Power

- . Lander
 - 5 NiMH AA Batteries (7.5V), total of 1,200 to 1,900 mAh
 - Mechanical Box Encasement
 - Rechargeable, sufficient power, cost effective
 - Protection circuits
 - . Arduino Reverse Polarity Detection/Short Circuit Protection
- . Tank
 - 2 NiMH AA Batteries

Lander Power Distribution

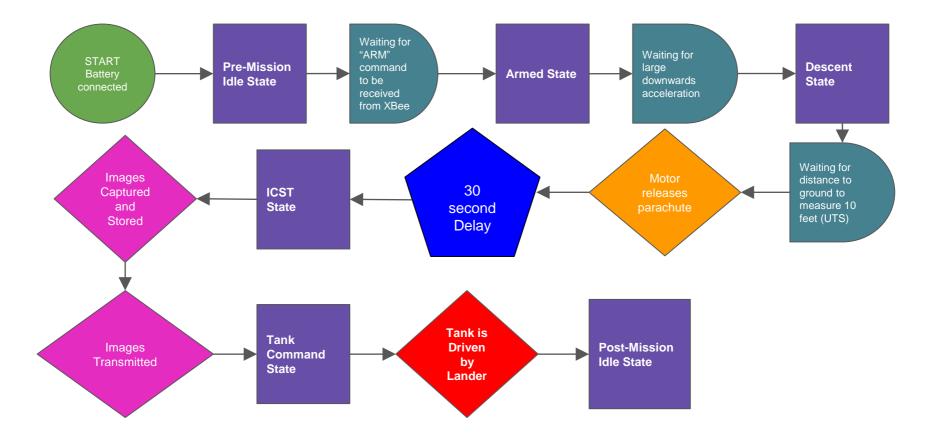
- . Lander Electrical Power System Design
 - Arduino Built-in 5 Volt, 1 Amp Regulator (NCP1117ST50T3G)
 - Jumper cables for distribution to sensors

Software

Lander Software Design

Software States:

- 1. Pre-Mission Idle
- 2. Armed
- 3. Descent
- 4. ICST
- 5. Tank Command
- 6. Post-Mission Idle



Telemetry

- Telemetry from the Lander will be 4 images in each direction
- Each image is in a JPEG format with a resolution of 600 x 480 pixels.
- Transmission
 - Picture taken from each camera and stored, Arduino MEGA will read the length of the image file.
 - Send a command to the Ground Station in the following format: "IMG<LENGTH>|" The pipe "|" is the command delimiter <LENGTH> is the length of the image file in bytes
 - Read the picture file on the microSD card and send each byte through a serial connection (baudrate of 9600) to the XBee.
 - The XBee will then transmit the byte to the Ground Station XBee
 - Ground Station XBee receives the byte and sends it through the serial connection to the UNO, passes through to the Laptop. The Python program reads the byte and writes it directly to a file. This repeats until all bytes of the file have been sent
 - The "ZigBee" protocol is being used, which is based off of IEEE 802.15.4 Transmission rate is capped at 250kbits/second Operates in 2.4 GHz band, uses Offset Quadrature Phase Shift Keying (OQPSK)

Software Flow Chart

Software Development Plan

The purpose of this system is to control the arming of the Lander, release of the parachute from the Lander, the sensing of impact with ground, the capture, storage, and transmission of 4 images, and the deployment and navigation of the Tank.

- This software applies to the Arduino MEGA 256 that is on the Lander.
- Software is used in tandem with the 2018 York Area Mars Rover Team Ground Station Program which sends the arming signal and processes the images.

Software Development Plan (cont)

Overview of Required Work

- Compiled software must fit within the FLASH program memory of the Arduino MEGA 256, which is 248 KiloBytes
- Serial port communication can only on one port at a time (no concurrent writing and/or listening to serial ports)
- Must be able to communicate with four PTC06 serial cameras, an ultrasonic sensor, MMA8541 accelerometer, a microSD breakout board using SPI, a servo motor to release the parachute and control the Tank by varying the voltage levels on the Tank's controller circuit.

Completion of Tasks

- Capture, storage, and transmission of Images, completed December 12th
- Ground Station GUI and command sending, completed December 21st
- Tank navigation and parachute release still uncompleted

Rover Payload Integration

- . Foam Sabot
- . Describe process of payload integration
 - Rover is turned on, in the Software "Pre-Mission Idle" State, and placed in the sabot which is then placed in the rocket.

Software Development Plan (cont.)

⊋ 2018 York Area Mars Rover Team Ground Station (as superuser) - + ⊗			
File Connection View Help			
Connected to XBee via: /dev/ttyACM1			
Test Connection	Arm Rover	Kill Rover	
Clear Logs	TEST1	button	
button button		button	
2018-Jan-28 15:01:01:172595] ARM 2018-Jan-28 15:01:03:428182] TEST1 2018-Jan-28 15:01:33:289697] TEST1 2018-Jan-28 15:01:49:419044] ARM 2018-Jan-28 15:01:50:954639] TEST1 2018-Jan-28 15:01:55:518383] Picture from cam { 2018-Jan-28 15:02:21:730884] Saved pic-cam 1 2018-Jan-28 15:02:21:74384] Beginning to receive image, 2018-Jan-28 15:11:32:710377] Finished Receiving 2018-Jan-28 15:11:32:710377] Finished Receiving 2018-Jan-28 15:11:32:710377] Finished Receiving 2018-Jan-28 15:12:31:574819] Camera 1 Fou 2018-Jan-28 15:12:31:574819] Camera 1 Fou			

Ground Station GUI

- Python 3.5 program
- Utilizes: PySerial, GTK3
- GUI designed using Glade
- Communicates over serial to the XBee, which then transmits to the Rover XBee
- Saves Images received from Rover
- Keeps logs of outgoing and incoming data
- Can send commands
- ARM Sets the Rover's software state to the "Armed" State
- KILL Legacy command for previous tank concept (remote kill switch)
- **Test Commands**
- "TEST1" Test of ICST
- Test Connection Sends out "pings" to the Rover and waits for replies. Test connection quality.

Testing

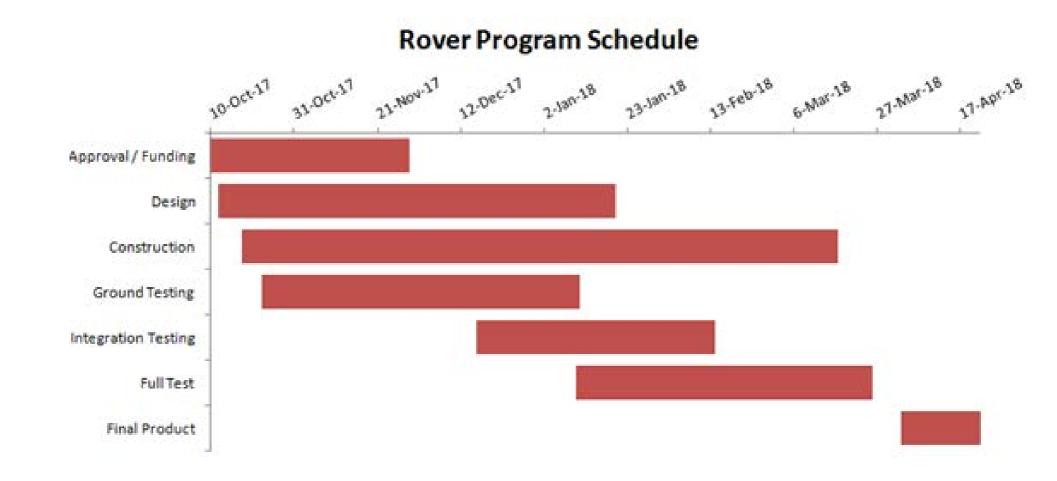
Rover Testing

- Subsystem Testing
- •Image capture and saving to SD card
- Serial communication over Lander XBee to Ground Station XBee
- Integration Testing
- Pre-launch Test Program to check sensors and electronics
- **Functional Testing**
- Programmed Tank Paths
 - The Tank path programs are adjusted from test to test to find the best travel path
- Test flight will be done to test if Launch, Descent, and Landing accelerations are recognized/detected
- Test flight to test if proximity to ground is detected accurately

- Ejection charge test on December 17
 - One of the bulk heads was damaged on the electronics bay, our design had to be altered
- Dec 19 through Jan 16 Ebay was strengthened by adding two plywood rings and wooden joists separating them. The bulkheads rest and seal against the wooden ring.
- Flight test planned for January 13 and 14, cancelled due to weather
- Jan 26 Ejection charges were tested by attaching the rocket to a zipline. Videos to follow.
- Next flight test planned for February 17 and 18

Ejection Charge Test (Main)

- The rocket will have new batteries in the E-Bay before every launch, and before the launch, all altimeters will be tested.
- Freshly charged batteries are put in tank and Lander
 - Test Program is uploaded to Lander to check sensors/connections
- The rover will be incorporated into the rocket by being inside a sabot
- At the launch pad, the key switches will be turned and arm the electronics bay.
- After Rover is placed in payload section:
 - Arming Button is pressed and prep cycle commences



Rocket Program Schedule

Start Date	Finish Date	Activities
October 8	October 11	Registration for BOR
October 20		Order places for parachutes
October 22		Order placed for rocket components
October 24	November 28	Designing rocket
October 30		Order placed for k-1000 motors
November 20	December 1	PDR completed
November 17		Rocket components recieved
November 28	December 8	Construction of Rocket Body
December 4		building session on Rocket, Finns cut and attached
December 8		Presentation of PDR
December 11		Parachute recieved
December 11		build session on rocket, E-bay built and attached
December 13		Phenolic body tubes ordered
December 17		Ejection charges tested
December 20		Phenolic body tubes recieved
December 20	January 16	redesign of rocket
December 28		Build session, additions made to finns on first rocket, E-bay reinforced
January 12		CDR work started
January 13	January 14	Launch cancelled due to weather
January 13		Extended build session, second rocket constructed
January 16		Build session, motor casing and through the wall finns completed
January 23		CDR meeting
January 25		CDR completed
January 26	February 1	Final CDR editing and presentation practice
January 28		test improved E-Bay with ejection charges
January 30		CDR practice meeting
February 1		CDR submitted

Payload Program Schedule

Rocket Program Schedule

February 6		Build session, second rocket made flight ready
February 9		Presentation of CDR
February 13		Build session, measurements taken of rocket to check that it has correct weight and CP
February 13		present rocket and Spring Grove High School rocketry program to Indian Rock Elementary
February 17	February 18	Test Launch second rocket, integrate test rover
February 27		Build session, repair rockets and trouble shoot any noted issues from launch
March 6		Build session, test integration of Rover into Rocket's compartment
March 14		Build session, prepare Rocket and Rover for full systems test
March 17	March 18	Full systems integration test with Rover team
March 20		Build session, make repairs and trouble shoot any noted issues from launch
March 27		Build session, begin final measurements and preparation of Rocket
April 3		Build session, finalize measurements and preparation of Rocket
April 10		Team meeting, discuss strategy and team roles
April 14	April 15	Attend Battle of the Rockets

- The rockets components were all received on November 17 2017
- K-1000 motors were ordered on October 30th, and arrived January 5th
- K-1440 motors were ordered January 16 and arrived January 24
- Parachutes were ordered October 20th, and arrived December 11th
- Phenolic Body tubes were ordered from Public Missiles limited on December 13th and received them December 20th
- The body tubes were precut by the company at about the time it was ordered.

Program Budget

Components

Components	Cost
Preglassed Phenolic Airframe Tubing	\$710.97
Couplers for Bulkhead	\$12.09
Centering Rings	\$37.77
Coupled Bulkhead Assembly	\$57.79
24" long coupler tube	\$0.00
Fiberglass nose cone	\$235.99
24" section of coupler tubing	\$40.00
Perfect flight Stratologger CF altimeter (2)	\$100.00
75mm Aeropak motor retainer	\$44.00
Phenolic 11.4" Diameter Body Tube (2)	\$210.00
CTI Cesaroni K 1440 Motor Casing	\$44.00
Shipping and Handling	\$50.00
Total	\$1,542.61

Program Budget

Services

Service	Cost
Custom Ariframe cutting and slotting (2)	\$41.00
Total	\$41.00

Program Budget

Travel expenses

Travel Expences	Cost
Hotel Costs	\$2,970
Food Costs	\$4,732
Vehicle Expense	\$1,343.65
total	\$9,046

Grand Total

Grand Total		\$10,629.26

Budget Category	Amount	Source
Components	\$1000	YCAL Innevation Grant
Components	\$500	Engineering Society of York
Travel and Components	\$1000	Dover Eagle Foundation

• Development moves very fast, every day new ideas arise and changes/additions are made to the design. Some key accomplishments were successfully transmitting images and successful sensor testing. Some issues we ran into were the legality of our "rover", material requirements, sensor accuracy, and lander layout. The electronics system is in the process of being constructed into its final form, and the lander and rover designs are beginning to be constructed.

Now we are reconstructing the rocket and so far redesigning the rocket has gone well. It's design so the rocket is lighter, fixing the issue with the CG and the CP. We fixed this issue by enlarging the fins so the CP is behind the CG by at least by a caliber. we are almost complete with making the rocket lighter to fix the 5:1 TWR. Thus far the only tests that have been completed on the rocket is an ejection test that was successful but the first flight is scheduled to happen on our pending February launch.